Back to Find Courses page

Bachelor of Engineering (Honours) in Civil Engineering

Bachelors Honours Degree (C/w)

Course snapshot

Domestic snapshot

  • Course abbreviation

    BE(Hons)Civil

  • Course code

    3507285

  • Credit points

    384

  • Equivalent units

    32

  • Indicative Fee


Overview

The Bachelor of Engineering (Honours) in Civil Engineering equips students with the relevant skills and knowledge to provide a range of professional civil engineering services in regional, national and international environments. The course prepares graduates for work involving the planning, design, construction and maintenance of critical civil engineering infrastructure such as buildings, roads, bridges, dams, pipelines, transport systems, and water supply and waste water treatment facilities.

The course is structured around the 16 competencies identified by Engineers Australia as being essential to the graduating engineer. These competencies are broadly grouped into: knowledge and skills, application, personal and professional skills.

Throughout the course, students develop core theoretical knowledge and skills vital to the engineering profession and the ability to apply these in the most relevant software applications.

Graduate AttributeCourse Learning Outcome
Intellectual rigour

Develop Research skills in order to be able to design plan and execute a research project with some independence.

Identify all influencing factors in complex engineering problems and to think about the macro and micro ramifications.

Develop cognitive and technical skills to review, analyse, consolidate and synthesise engineering knowledge to identify and provide solutions to complex problems with intellectual independence

Creativity

Adapt knowledge and skills in diverse contexts to form alternative solutions to complex problems

Ethical practice

Apply ethics and judgement to complex engineering problems

Knowledge of a discipline

Develop technical skills and an in-depth understanding of specialist bodies of engineering knowledge

Develop conceptual understanding of the, mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline

Lifelong learning

Self manage and be resourceful and effective at developing new knowledge and applying it to engineering problems

Demonstrate computer literacy skills in both standard applications and discipline specific applications

Develop appropriate professional practice, reflection skills and engineering competencies through study and professional practice

Communication and social skills

Effectively communicate engineering ideas, concepts and arguments using written mediums to a variety of audiences

Verbally communicate and influence a variety of audiences including the engineering team, community and people of diverse cultural backgrounds

Cultural competence

Engage with diverse cultural and Indigenous perspectives with the engineering environment

Students further develop their skills and knowledge and prepare for their careers as professional civil engineers, during a 60-day industry placement.

Students  engage with industry representatives from the early stages of the course, creating valuable professional networks. 

Students have the option to select either an eight-unit major in Environmental Engineering or undertake a general course of study. 

Students who follow the general course of study will focus on core areas such as: structural engineering, construction, project management, hydraulic engineering, water and wastewater engineering, geotechnical engineering, traffic and transport engineering, and environmental engineering. The course is strongly focused on project engineering from first year through to the final year. The course also addresses fundamental concepts that cross all disciplines including professional ethics, sustainability, conflict resolution and negotiation. 

The Environmental Engineering major prepares students with the scientific knowledge and engineering skills needed to understand and assess the impact of an engineering project on the environment. This will enable graduates to develop sustainable and ethical systems that optimise the relationship between human activities and the natural and built environments.

All students undertake a full-year subject in engineering research (thesis unit) in their final year, which enables them to explore the frontiers of engineering development and contribute to new knowledge in their chosen field. 

Location Teaching period UAC code QTAC code
Lismore Session 1 334103 054201

Career Outcomes

Engineers Australia is the professional body representing engineering in Australia. Southern Cross University has provisional accreditation for the degree from Engineers Australia.

Accreditation of the course by Engineers Australia enables a student’s qualification to be formally recognised in many different countries throughout the world in accordance with the Washington Accord, an international agreement governing recognition of engineering qualifications and professional competence.

Requirements

We encourage you to apply for the courses you most want to study. If you are not eligible to enter your chosen course right now, our team will work with you to find the best pathway option.

Before applying, make sure you double check all entry requirements, gather required documentation and review the University’s Rules Relating to Awards, noting any specifics listed below.

Course requirements

To be eligible for the award of Bachelor of Engineering (Honours) in Civil Engineering a candidate shall successfully complete the equivalent of thirty-two (32) units (384 credit points) comprising:

  1. all units listed in Part A; and
  2. the eight (8) unit single major listed in Part B; or
  3. all units in Part C and two (2) units from Part D

and additionally complete at least 60 days of industrial experience of a nature acceptable to the Course Coordinator.

Class of Honours

A candidate may on the recommendation of the Course Coordinator be awarded Honours with one of the following merit descriptors:

  • First Class Honours
  • Second Class Honours – Division I
  • Second Class Honours – Division II

Merit Descriptors

The following criteria shall be satisfied to obtain a particular merit descriptor:

  • First Class Honours: a Weighted Grade Point Average (WGPA) of at least 6.0 and a Grade Point Average (GPA) of at least 6.0 in both units Engineering Thesis I and Engineering Thesis II
  • Second Class Honours – Division I: a Weighted Grade Point Average (WGPA) of at least 5.5 and a Grade Point Average (GPA) of at least 5.5 in both units Engineering Thesis I and Engineering Thesis II
  • Second Class Honours – Division II: a Weighted Grade Point Average (WGPA) of at least 5.0 and a Grade Point Average (GPA) of at least 5.0 in both units Engineering Thesis I and Engineering Thesis II

A student with a Weighted Grade Point Average (WGPA) of less than 5.0 shall not be eligible for a merit descriptor.

Weighted Grade Point Average Calculation

The Weighted Grade Point Average (WGPA) shall be calculated according to the formula:

WGPA = {Summation of (Grade Point x Credit Value x Weighting)}/{Summation of (Credit Value x Weighting)}

where:

Grade Point = achievement value assigned to a unit grade (non-graded units, interim notations and advanced standing shall not be included in the WGPA calculation);

Credit Value = number of credit points awarded for the completion of a unit of study;

Weighting = 1 for a unit listed in Year 1 of the Course Progression, 2 for a unit listed in Year 2 of the Course Progression, 3 for a unit listed in Year 3 of the Course Progression, and 4 for a unit listed in Year 4 of the Course Progression; and

WGPA calculations shall be based on results for the first attempt at each unit in the course. 

Course structure

Your course progression is in the recommended order you should complete your course in. It is important that you follow this to ensure you meet the course requirements. For further assistance see How to Enrol in Units using My Enrolment.

Students should use course progression information to select units specific to their course and enrol in these units using My Enrolment.

Unit Code Unit Title Available Credit points Level of learning Notes
Year 1, Session 1
ENG10759 -  Processes and Philosophy of Engineering Introductory
PHY10760 -  Physics and Materials Introductory
MAT10251 -  Statistical Analysis Intermediate
Choose either: MAT10001 -  Foundation Mathematics OR MAT10720 -  Linear Algebra Introductory Note 1
Year 1, Session 2
ENG10758 -  Humanitarian Engineering Project Introductory
ENG10757 -  Applied Mechanics Introductory
Choose either: MAT71003 -  Mathematics for Engineers and Scientists OR MAT10719 -  Calculus Introductory Note 1
CHE00201 -  Chemistry Introductory
Year 2, Session 1
ENG20001 -  Mechanics of Materials Intermediate
ENG20005 -  Hydrology Intermediate
ENG20007 -  Engineering Computations Intermediate
ENG20002 -  Engineering Construction and Tendering Intermediate
Year 2, Session 2
ENG20003 -  Concrete Structures Intermediate
ENG20006 -  Fluid Mechanics Intermediate
ENG72001 -  Engineering Modelling and Experimentation Intermediate
AGR00215 -  Water and Catchment Management Advanced
Year 3, Session 1
ENG30004 -  Analysis and Computer Modelling of Structures Advanced
ENG30002 -  Soil Mechanics and Geology Advanced
ENG30010 -  Traffic and Road Safety Engineering Introductory
ENG30009 -  Hydraulic Engineering Advanced
Year 3, Session 2
ENG30005 -  Design of Structures Introductory
ENG30007 -  Geotechnical Engineering Advanced
ENG30011 -  Regional and Urban Transport Planning Introductory
ENG30012 -  Water and Wastewater Engineering Advanced
Year 4, Session 1
ENG40007 -  Engineering Project Management and Professional Ethics Advanced
ENG40001 -  Engineering Thesis I Advanced Note 2
ENG40006 -  Municipal Infrastructure Design and Surveying Advanced
Choose one unit (subject to availability) from Part D Elective Units
Year 4, Session 2
ENG40004 -  Engineering Thesis II Advanced Note 2
ENG40005 -  Engineering Capstone Project Advanced Note 3
Choose one unit (subject to availability) from Part D Elective Units

Unit Code Unit Title Available Credit points Level of learning Notes
Year 1, Session 1
ENG10759 -  Processes and Philosophy of Engineering Introductory
PHY10760 -  Physics and Materials Introductory
MAT10251 -  Statistical Analysis Intermediate
Choose either: MAT10001 -  Foundation Mathematics OR MAT10720 -  Linear Algebra Introductory Note 1
Year 1, Session 2
ENG10758 -  Humanitarian Engineering Project Introductory
ENG10757 -  Applied Mechanics Introductory
Choose either: MAT71003 -  Mathematics for Engineers and Scientists OR MAT10719 -  Calculus Introductory Note 1
CHE00201 -  Chemistry Introductory
Year 2, Session 1
ENG20001 -  Mechanics of Materials Intermediate
ENG20005 -  Hydrology Intermediate
ENG20007 -  Engineering Computations Intermediate
ENG20002 -  Engineering Construction and Tendering Intermediate
Year 2, Session 2
ENG20003 -  Concrete Structures Intermediate
ENG20006 -  Fluid Mechanics Intermediate
ENG72001 -  Engineering Modelling and Experimentation Intermediate
AGR00215 -  Water and Catchment Management Advanced
Year 3, Session 1
ENG30004 -  Analysis and Computer Modelling of Structures
Advanced
ENG30002 -  Soil Mechanics and Geology Advanced
ENG30010 -  Traffic and Road Safety Engineering Introductory
ENG30009 -  Hydraulic Engineering Advanced
Year 3, Session 2
ENG30005 -  Design of Structures Introductory
ENG30007 -  Geotechnical Engineering Advanced
ENG30011 -  Regional and Urban Transport Planning Introductory
ENG30012 -  Water and Wastewater Engineering Advanced
Year 4, Session 1
ENG40001 -  Engineering Thesis I Advanced Note 2
ENG40007 -  Engineering Project Management and Professional Ethics Advanced
ENG40006 -  Municipal Infrastructure Design and Surveying Advanced
Choose one unit (subject to availability) from: BIO00244 -  Protected Area Management OR ECO00202 -  Ecological and Environmental Economics for Sustainable Development OR ENS00218 -  Waste Technology OR PLN10001 -  Rural and Regional Planning Advanced
Year 4, Session 2
ENG40004 -  Engineering Thesis II Advanced Note 2
ENG40005 -  Engineering Capstone Project Advanced Note 3
Choose one unit (subject to availability) from: BIO00244 -  Protected Area Management OR ECO00202 -  Ecological and Environmental Economics for Sustainable Development OR ENS00218 -  Waste Technology OR PLN10001 -  Rural and Regional Planning Advanced

Note 1:

Choose either: (a) MAT10001 Foundation Mathematics and MAT71003 Mathematics for Engineers and Scientists, or (b) MAT10720 Linear Algebra and MAT10719 Calculus. Students who have not completed NSW HSC Mathematics (2U) or QLD Maths B or equivalent must choose option (a).

Note 2:

Students undertaking a Major must complete Thesis I and II in an area relevant to the Major as approved by the Course Coordinator.

Note 3:

Double-weighted unit

Unit Code Unit Title Level of learning Notes

Part A

Choose either option (a) or (b) based on Note 1
MAT10001 Foundation Mathematics Introductory Note 1
MAT71003 Mathematics for Engineers and Scientists Introductory Note 1
Or
MAT10720 Linear Algebra Intermediate Note 1
MAT10719 Calculus Intermediate Note 1
Then complete all the remaining units in Part A
ENG10759 Processes and Philosophy of Engineering Introductory
ENG10758 Humanitarian Engineering Project Introductory
MAT10251 Statistical Analysis Intermediate
PHY10760 Physics and Materials Introductory
CHE00201 Chemistry Introductory
ENG10757 Applied Mechanics Introductory
ENG30010 Traffic and Road Safety Engineering Introductory
ENG20002 Engineering Construction and Tendering Intermediate
ENG20007 Engineering Computations Intermediate
ENG30005 Design of Steel Structures Introductory
ENG30011 Regional and Urban Transport Planning Introductory
ENG20001 Mechanics of Materials Intermediate
ENG20003 Concrete Structures Intermediate
ENG20006 Fluid Mechanics Intermediate
ENG72001 Engineering Modelling and Experimentation Intermediate
ENG30004 Analysis and Computer Modelling of Structures Advanced
ENG30002 Soil Mechanics and Geology Advanced
ENG30007 Geotechnical Engineering Advanced
ENG40006 Municipal Infrastructure Design and Surveying Advanced
ENG40007 Engineering Project Management and Professional Ethics Advanced
ENG40005 Engineering Capstone Project Advanced

Part B

Unit Code Unit Title Level of learning Notes
ENG20005 Hydrology Intermediate
AGR00215 Water and Catchment Management Advanced
ENG30009 Hydraulic Engineering Advanced
ENG30012 Water and Wastewater Engineering Advanced
ENG40001 Engineering Thesis I Advanced Note 2
ENG40004 Engineering Thesis II Advanced Note 2
Choose two (2) of the following units:
BIO00244 Protected Area Management Advanced
ENS00218 Waste Technology Intermediate
ECO00202 Ecological and Environmental Economics for Sustainable Development Intermediate
PLN10001 Rural and Regional Planning Introductory

Part C

Unit Code Unit Title Level of learning Notes
ENG20005 Hydrology Intermediate
AGR00215 Water and Catchment Management Advanced
ENG30009 Hydraulic Engineering Advanced
ENG30012 Water and Wastewater Engineering Advanced
ENG40001 Engineering Thesis I Advanced
ENG40004 Engineering Thesis II Advanced

Part D

Unit Code Unit Title Level of learning Notes
GLY00223 Introduction to Geographic Information Systems Intermediate
FOR00106 Wood Science and Utilisation Intermediate
FOR00104 Forest Operations Intermediate
FOR00112 Product Development and Marketing Intermediate
FOR00100 Fire Ecology and Management Intermediate
MNG10247 Managing Organisations Introductory
PLN10002 Sustainability and Professional Ethics for Planners Introductory
PLN20001 Land and Development Economics Intermediate
PLN20002 Settlements and Urban Design Intermediate
PLN20005 Community Engagement Intermediate
MNG10253 Sustainable Business Management Advanced
BIO00244 Protected Area Management Advanced
ENS00218 Waste Technology Intermediate
ECO00202 Ecological and Environmental Economics for Sustainable Development Intermediate
PLN10001 Rural and Regional Planning Introductory
ENI72001 Dynamics Intermediate
ENI72005 Introduction to Mechanical Design and Manufacturing Intermediate
ENI73025 Thermodynamics Advanced
ENI73005 Machine Element Design Advanced
ENI73020 Fluids Engineering Advanced